19. 已知二次函数 ()满足 (1) 求b的值, (2) 当时.求的反函数, 中的.如果在上恒成立.求实数m的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)
(1)求证:函数图象交于不同的两点;
(2)设(1)问中交点为,求线段AB在x轴上的射影A1B1的长的取值范围。

查看答案和解析>>

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.

(1)若f(-1)=0,试判断函数f(x)零点的个数;

(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:

①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;

②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说

明理由。

(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

 

 

查看答案和解析>>

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说
明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

查看答案和解析>>

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说
明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

查看答案和解析>>

(本题满分12分)

已知二次函数和一次函数,其中满足

(1) 求证:两函数的图象交于不同的两点AB

(2) 求证:方程的两根都小于2;

(3)由 (1)知两函数的图象交于不同的两点AB,求线段ABx轴上的射影A1B1的长的取值范围。

查看答案和解析>>


同步练习册答案