如下图.某小区准备绿化一块直径为的半圆形空地.外的地方种草. 的内接正方形为一水池,其余地方种花.若 ,设的面积为.正方形的面积为.将比值称为“规划合理度 . (1)试用,表示和. (2)当为定值.变化时,求“规划合理度 取得最小值时的角的大小. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.

某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)

(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;

(II) 以这9天的PM2.   5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级.

 

查看答案和解析>>

(本小题满分12分)
PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.
某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)

(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;
(II) 以这9天的PM2.   5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级.

查看答案和解析>>

(本小题满分分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ) 测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如右图:
(ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的期望及标准差(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,据此,估计该年级身高在范围中的学生的人数.
(Ⅲ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表

 
身高达标
身高不达标
总计
积极参加体育锻炼
40
 
 
不积极参加体育锻炼
 
15
 
总计
 
 
100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K=,参考数据:
P(Kk)
0.40
0.25
0.15
0.10
0.05
0.025
k
0.708
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>

(本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别

PM2.5(微克/立方米)

频数(天)

频 率

第一组

(0,15]

4

0.1

第二组

(15,30]

12

第三组

(30,45]

8

0.2

第四组

(45,60]

8

0.2

第五组

(60,75]

0.1

第六组

(75,90)

4

0.1

(Ⅰ)试确定的值,并写出该样本的众数和中位数(不必写出计算过程);

(Ⅱ)完成相应的频率分布直方图.

(Ⅲ)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

 

查看答案和解析>>

(本小题满分分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ) 测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如右图:
(ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的期望及标准差(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,据此,估计该年级身高在范围中的学生的人数.
(Ⅲ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
 
身高达标
身高不达标
总计
积极参加体育锻炼
40
 
 
不积极参加体育锻炼
 
15
 
总计
 
 
100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K=,参考数据:
P(Kk)
0.40
0.25
0.15
0.10
0.05
0.025
k
0.708
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>


同步练习册答案