已知:斜边为的.过点作平面..分别为边上的垂足. (1)求证: (2)求:若.则为何值时.的面积有最大值?最大值为多少? 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知椭圆C:(.

(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;

(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;

(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求满足的条件.

 

查看答案和解析>>

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

 

查看答案和解析>>

(本小题满分12分)已知椭圆C:(.

(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;
(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求满足的条件.

查看答案和解析>>

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

查看答案和解析>>

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.

查看答案和解析>>


同步练习册答案