题目列表(包括答案和解析)
(03年北京卷文)(12分)
设为两定点,动点P到A点的距离与到B点的距离的比为定值,求P点的轨迹.
设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角定点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.
设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角定点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com