1.已知且.则可表示成 . 查看更多

 

题目列表(包括答案和解析)

已知展开式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…对x∈R且x≠0恒成立,方程
sinx
x
=0有无究多个根:±π,±2π,…±nπ,…,则1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
…,比较两边x2的系数可以推得1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6
.设代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,类比上述方法可得a1=
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
.(用x1,x2,…,xn表示)

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

已知展开式+…对x∈R且x≠0恒成立,方程=0有无究多个根:±π,±2π,…±nπ,…,则1-…,比较两边x2的系数可以推得1+.设代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,类比上述方法可得a1=    .(用x1,x2,…,xn表示)

查看答案和解析>>

已知展开式数学公式+…对x∈R且x≠0恒成立,方程数学公式=0有无究多个根:±π,±2π,…±nπ,…,则1-数学公式…,比较两边x2的系数可以推得1+数学公式.设代数方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n个不同的根:±x1,±x2,…±xn,类比上述方法可得a1=________.(用x1,x2,…,xn表示)

查看答案和解析>>

已知命题P:非零向量满足=,命题Q:表示的有向线段可构成三角形,则P是Q的

[  ]

A.充分且不必要条件
B.必要且不充分条件
C.充要条件
D.既不充分又不必要条件

查看答案和解析>>


同步练习册答案