(1)在中.由正弦定理得①. 在中.由正弦定理得②. ---------2分 又平分. 所以.. . 由①②得.所以.------------------6分 (2)因为.所以. 在△中.因为. ----10分 所以 .---------------------14分 查看更多

 

题目列表(包括答案和解析)

中,,分别是角所对边的长,,且

(1)求的面积;

(2)若,求角C.

【解析】第一问中,由又∵的面积为

第二问中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C为内角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面积为           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C为内角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

已知在中,,解这个三角形;

【解析】本试题主要考查了正弦定理的运用。由正弦定理得到:,然后又       

再又得到c。

解:由正弦定理得到:

                      ……4分

      ……8分

    

 

查看答案和解析>>

精英家教网如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1CC1
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若AB=
2
,求二面角A-EB1-A1的大小.

查看答案和解析>>

精英家教网如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,AF=AB=BC=FE=
1
3
AD.
(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为
6
3
?若存在,试确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E点满足
PE
=
1
3
PD

(1)证明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在线段BC上是否存在点F,使得PF∥平面EAC?若存在,确定点F的位置,若不存在请说明理由.

查看答案和解析>>


同步练习册答案