2.注意恒成立问题 查看更多

 

题目列表(包括答案和解析)

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)

已知函数

(Ⅰ)若,试确定函数的单调区间;

(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;

(Ⅲ)设函数,求证:

 

查看答案和解析>>

(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(g))处的切线斜率为3(为自然对数的底数).
(1)求实数a、b的值;
(2)若k∈Z,且k<对任意x>l恒成立,求k的最大值;
(3)当m>n>l(m,n∈Z)时,证明:(nmmn>(mnnm
(注:本题第(2)(3)两问只需要解答一问,两问都答只计第(2)问得分)

查看答案和解析>>


同步练习册答案