21.已知某类学习任务的掌握程度与学习时间之间的关系为 .这里我们称这一函数关系为“学习曲线 .已知这类学习任务中的某项任务有如下两组数据:. (1)试确定该项学习任务的“学习曲线 的关系式, (2)若定义在区间上的平均学习效率为.问这项学习任务从哪一刻开始的2个单位时间内平均学习效率最高. 查看更多

 

题目列表(包括答案和解析)

已知某类学习任务的掌握程度与学习时间(单位时间)之间有如下函数关系:

(这里我们称这一函数关系为“学习曲线”).

若定义在区间上的平均学习效率为,这项学习任务从在从第

单位时间起的2个单位时间内的平均学习效率最高.则=      

 

查看答案和解析>>

已知某类学习任务的掌握程度与学习时间(单位时间)之间有如下函数关系:
(这里我们称这一函数关系为“学习曲线”).
若定义在区间上的平均学习效率为,这项学习任务从在从第
单位时间起的2个单位时间内的平均学习效率最高.则=      

查看答案和解析>>

已知某类学习任务的掌握程度y与学习时间t(单位时间)之间的关系为y=f(t)=
1
1+a•2-bt
•100%
,这里我们称这一函数关系为“学习曲线”.已知这类学习任务中的某项任务有如下两组数据:t=4,y=50%;t=8,y=80%.
(Ⅰ)试确定该项学习任务的“学习曲线”的关系式f(t);
(Ⅱ)若定义在区间[x1,x2]上的平均学习效率为η=
y2-y1
x2-x1
,问这项学习任务从哪一刻开始的2个单位时间内平均学习效率最高.

查看答案和解析>>

已知某类学习任务的掌握程度y与学习时间t(单位时间)之间的关系为y=f(t)=数学公式,这里我们称这一函数关系为“学习曲线”.已知这类学习任务中的某项任务有如下两组数据:t=4,y=50%;t=8,y=80%.
(Ⅰ)试确定该项学习任务的“学习曲线”的关系式f(t);
(Ⅱ)若定义在区间[x1,x2]上的平均学习效率为数学公式,问这项学习任务从哪一刻开始的2个单位时间内平均学习效率最高.

查看答案和解析>>

已知某类学习任务的掌握程度y与学习时间t(单位时间)之间的关系为y=f(t)=
1
1+a•2-bt
•100%
,这里我们称这一函数关系为“学习曲线”.已知这类学习任务中的某项任务有如下两组数据:t=4,y=50%;t=8,y=80%.
(Ⅰ)试确定该项学习任务的“学习曲线”的关系式f(t);
(Ⅱ)若定义在区间[x1,x2]上的平均学习效率为η=
y2-y1
x2-x1
,问这项学习任务从哪一刻开始的2个单位时间内平均学习效率最高.

查看答案和解析>>


同步练习册答案