已知不等式|x+3|>2|x|①. ≥1②.2x2+mx-m2<0③. (1)若同时满足不等式①.②的x值也满足不等式③.求m的取值范围, (2)若满足不等式③的x值至少满足不等式①.②中的一个.求m的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知定义在区间(0,+∞)上的函数f(x)满足ff(x1)-f(x2),且当x>1时,

f(x)<0. (1)求f(1)的值; (2)判断f(x)的单调性

(3)若f(3)=-1,解不等式f(|x|)<-2.

 

查看答案和解析>>

(本小题满分14分)

已知函数

(1)解关于x的不等式f(x)<0;

(2)当=-2时,不等式f(x)>ax-5在上恒成立,求实数a的取值范围;

(3)设,已知,求的范围.

查看答案和解析>>

(本小题满分14分) 对函数Φx),定义fkx)=Φxmk)+nk(其中x∈(mk

mmk],kZm>0,n>0,且mn为常数)为Φx)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.

(1)当Φx)=2x时  ①求f0x)和fkx)的解析式;  ②求证:Φx)的各阶阶梯函数图象的最高点共线;

(2)若Φx)=x2,则是否存在正整数k,使得不等式fkx)<(1-3kx+4k2+3k-1有解?若存在,求出k的值;若不存在,请说明理由.

 

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
01
10
,N=
0-1
10

(Ⅰ)求矩阵NN;
(Ⅱ)若点P(0,1)在矩阵M对应的线性变换下得到点P′,求P′的坐标.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程是
x=t
y=2t+1
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是ρ=2cosθ(Ⅰ)在直角坐标系xOy中,求圆C的直角坐标方程
(Ⅱ)求圆心C到直线l的距离.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函数y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵
(Ⅰ)求矩阵NN;
(Ⅱ)若点P(0,1)在矩阵M对应的线性变换下得到点P′,求P′的坐标.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程是(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是ρ=2cosθ(Ⅰ)在直角坐标系xOy中,求圆C的直角坐标方程
(Ⅱ)求圆心C到直线l的距离.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函数y=f(-x)+f(x+5)的最小值.

查看答案和解析>>


同步练习册答案