解:(Ⅰ)依题意平行且等于. 查看更多

 

题目列表(包括答案和解析)

下列类比错误的是(    )

A.三角形的两边中点连线得到的中位线平行并且等于第三边的一半,类似地,三棱锥的中截面的面积等于底面面积的一半

B.三角形两边中点连线得到的中位线平行且等于第三边的一半,类似地,三棱锥的中截面的面积等于底面面积的

C.三角形被平行于一边的直线所截得的三角形与原三角形相似,面积比等于相似比的平方,类似地棱锥被平行于底面的平面所截得的多边形与底面相似,面积比等于相似比的平方

D.梯形的中位线等于两底和的一半,类似地,圆台的中截面半径等于上、下两底半径和的一半

查看答案和解析>>

命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有(                   ).

A.①,②,④              B.①,④              C.②,④              D.④

 

查看答案和解析>>

下列类比错误的是(    )

A.三角形的两边中点连线得到的中位线平行并且等于第三边的一半,类似地,三棱锥的中截面的面积等于底面面积的一半

B.三角形两边中点连线得到的中位线平行且等于第三边的一半,类似地,三棱锥的中截面的面积等于底面面积的

C.三角形被平行于一边的直线所截得的三角形与原三角形相似,面积比等于相似比的平方,类似地棱锥被平行于底面的平面所截得的多边形与底面相似,面积比等于相似比的平方

D.梯形的中位线等于两底和的一半,类似地,圆台的中截面半径等于上、下两底半径和的一半

查看答案和解析>>

命题
①12是4和3的公倍数;                      ②相似三角形的对应边不一定相等;
③三角形中位线平行且等于底边长的一半;     ④等腰三角形的底角相等.

上述4个命题中,是简单命题的是.


  1. A.
    ①②④
  2. B.
    ①④
  3. C.
    ②④
  4. D.

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案