题目列表(包括答案和解析)
定义在R上的偶函数f(x)满足:对任意x1,x2∈[0,+∞)(x1≠x2),有<0,则( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
如果对任意实数t都有f (3+ t) = f (3-t),那么( )
A.f (3) < f (1) < f (6) B.f (1) < f (3) < f (6)
C.f (3) < f (6) < f (1) D.f (6) < f (3) < f (1)
定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有<0,则( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有
<0,则( )
A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)
C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)
已知函数f(x)是偶函数,在(0,+¥)上导数>0恒成立,则下列不等式成立的是
A f(-3)<f(-1)<f(2) B f(-1)<f(2)<f(-3)
C f(2)<f(-3)<f(-1) D f(2)<f(-1)<f(-3)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com