X轴与y轴.x轴与z轴均成1350,而z轴垂直于y轴. 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个小题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分
(1)已知
10
12
B=
-43
4-1
,求矩阵B.
(2)已知极点与原点重合,极轴与x轴正半轴重合,若曲线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=2cosθ
y=
3
sinθ
(θ为参数),试求曲线C1、C2的交点的直角坐标.
(3)已知x2+2y2+3z2=
18
17
,求3x+2y+z的最小值.

查看答案和解析>>

若直线l与x、y轴分别交于A(a,0),B(0,b),ab≠0,则直线l的截距式方程为
x
a
+
y
b
=1
,若平面α与x、y、z轴分别交于A(a,0,0),B(0,b,0),C(0,0,c),abc≠0,则平面α的截距式方程为
x
a
+
y
b
+
z
c
=1
;由点P(x0,y0)到直线Ax+By+C=0的距离d=
|Ax0+By0+C|
A2+B2
类比到空间有:点M(x0,y0,z0)到平面Ax+By+Cz+D=0的距离d=
|Ax0+By0+Cz0+D|
A2+B2+C2
|Ax0+By0+Cz0+D|
A2+B2+C2

查看答案和解析>>

已知函数f(x)=Asin2(ωx+φ)+1 (A>0,ω>0,0<φ<
π2
)的最大值为3,其图象的两条相邻对称轴间的距离为2,与y轴交点的纵坐标为2,则f(x)的单调递增区间是
[4k-1,4k+1],k∈z
[4k-1,4k+1],k∈z

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>


同步练习册答案