向量法在求点到平面的距离中 (1)设分别以平面外一点P与平面内一点M为起点和终点的向量为.平面的法向量为.则P到平面的距离d等于在方向上正射影向量的模. d= 例2.已知正方形ABCD的边长为4.CG⊥平面ABCD.CG=2,E.F分别是AB.AD的中点.求点B到平面GEF的距离. 例3.在边长为1的正方体ABCD-A1B1C1D1中.M.N.E.F分别是棱A1B1.A1D1.B1C1.C1D1的中点.求平面AMN与平面EFDB的距离. 例4 直三棱柱ABC-A1B1C1的侧棱AA1=.底面ΔABC中.∠C=90°.AC=BC=1.求点B1到平面A1BC的距离. 查看更多

 

题目列表(包括答案和解析)

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

如图,在三棱锥中,平面平面中点.(Ⅰ)求点B到平面的距离;(Ⅱ)求二面角的余弦值.

【解析】第一问中利用因为中点,所以

而平面平面,所以平面,再由题设条件知道可以分别以轴建立直角坐标系得

故平面的法向量,故点B到平面的距离

第二问中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因为中点,所以

而平面平面,所以平面

  再由题设条件知道可以分别以轴建立直角坐标系,得

,故平面的法向量

,故点B到平面的距离

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>


同步练习册答案