16.等差数列的前项和满足成等差.类比以上结论有:等比数列的前项积满足 . . . 成等比. 查看更多

 

题目列表(包括答案和解析)

下列类比推理的结论正确的是(  )
①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;
②类比“平面内,同垂直于一直线的两直线相互平行”,得到猜想“空间中,同垂直于一直线的两直线相互平行”;
③类比“设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8成等差数列”,得到猜想“设等比数列{bn}的前n项积为Tn,则T4
T8
T4
T12
T8
成等比数列”;
④类比“设AB为圆的直径,P为圆上任意一点,直线PA,PB的斜率存在,则kPA•kPB为常数”,得到猜想“设AB为椭圆的长轴,p为椭圆上任意一点,直线PA•PB的斜率存在,则kPA•kPB为常数”.

查看答案和解析>>

如果数列同时满足:(1)各项均不为,(2)存在常数k, 对任意都成立,则称这样的数列为“类等比数列” .由此等比数列必定是“类等比数列” .问:
(1)各项均不为0的等差数列是否为“类等比数列”?说明理由.
(2)若数列为“类等比数列”,且(a,b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,请举出反例.
(3)若数列为“类等比数列”,且(a,b为常数),求数列的前n项之和;数列的前n项之和记为,求.

查看答案和解析>>


同步练习册答案