题目列表(包括答案和解析)
(本小题满分12分)
已知函数f(x)=mx-,g(x)=2lnx.
(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当m=1时,证明方程f(x)=g(x)有且仅有一个实数根;
(Ⅲ)若xÎ(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.
(本小题满分12分) 已知定义在R上的函数f(x)=的周期为,
且对一切xR,都有f(x) ;
(1)求函数f(x)的表达式;
(2)若g(x)=f(),求函数g(x)的单调增区间;
(3) 若函数y=f(x)-3的图象按向量=(m,n) (|m|<)平移后得到一个奇函数的图象,求实数m、n的值.
(本题满分12分)
已知函数f(x)=x2+ax-lnx,a∈R;
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com