题目列表(包括答案和解析)
(08年上海卷理)(18分)已知以a1为首项的数列{an}满足:
⑴ 当a1=1,c=1,d=3时,求数列{an}的通项公式
⑵ 当0<a1<1,c=1,d=3时,试用a1表示数列{an}的前100项的和S100
⑶ 当0<a1<(m是正整数),c=,d≥3m时,求证:数列a2-,a3m+2-,a6m+2-,a9m+2-成等比数列当且仅当d=3m
(本题满分18分,其中第1小题4分,第2小题6分,第,3小题8分)
一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是,(如图所示,坐标以已知条件为准),表示青蛙从点到点所经过的路程。
(1) 若点为抛物线准线上
一点,点,均在该抛物线上,并且直线经
过该抛物线的焦点,证明.
(2)若点要么落在所表示的曲线上,
要么落在所表示的曲线上,并且,
试写出(不需证明);
(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的表达式.
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。
设抛物线的焦点为,过且垂直于轴的直线与抛物线交于两点,已知.
(1)求抛物线的方程;
(2)设,过点作方向向量为的直线与抛物线相交于两点,求使为钝角时实数的取值范围;
(3)①对给定的定点,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。
②对,过作直线与抛物线相交于两点,问是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?(只要求写出结论,不需用证明)
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数为上偶函数,当时,又函数图象关于直线对称, 当方程在上有两个不同的实数解时,求实数的取值范围。
..(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分。
设函数,数列满足。
⑴求数列的通项公式;
⑵设,若对恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的等比数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com