题目列表(包括答案和解析)
若函数f(x)和g(x)的定义域、值域都是R,则不等式f(x)> g(x)有解的充要条件是( )
(A)$ x∈R, f(x)>g(x) (B)有无穷多个x (x∈R ),使得f(x)>g(x)
(C)" x∈R,f(x)>g(x) (D){ x∈R| f(x)≤g(x)}=F
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
若f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2,且H(x)在[0,+∞)上有最大值5,求H(x)在(-∞,0]上的最小值.
若f(x)=ex,g(x)=2x-2,则对于任意的实数x,总有
f(x)<g(x)
f(x)>g(x)
f(x)≥g(x)
f(x)与g(x)的大小随x的变化而变化
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com