设α∈(0.).试证明:sinα<α<tanα. 证明:如下图.在平面直角坐标系中作单位圆.设角α以x轴正半轴为始边.终边与单位圆交于P点. ∵S△OPA<S扇形OPA<S△OAT. ∴|MP|<α<|AT|. ∴sinα<α<tanα. 探究创新 查看更多

 

题目列表(包括答案和解析)

设a,b,c∈(0,1),试证a(1-c),b(1-a),c(1-b)这三个数中至少有一个不大于

查看答案和解析>>

精英家教网已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

(2013•丰台区一模)设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…,)阶“期待数列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;
(Ⅱ)若某2k+1(k∈N*)阶“期待数列”是等差数列,求该数列的通项公式;
(Ⅲ)记n阶“期待数列”的前k项和为Sk(k=1,2,3,…,n),试证:
(1)|Sk|≤
1
2
;     
(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点在直线l:x=1上,离心率e=
1
2
.设P,Q为椭圆上不同的两点,且弦PQ的中点T在直线l上,点R(
1
4
,0).
(1)求椭圆的方程;
(2)试证:对于所有满足条件的P,Q,恒有|RP|=|RQ|;
(3)试判断△PQR能否为等边三角形?证明你的结论.

查看答案和解析>>

已知函数f(x)满足:对任意实数a、b都有f(a•b)=af(b)+bf(a).
(1)求证:f(x)为奇函数;
(2)设f(-
1
2
)=
1
2
,记an=f(2n),n∈N*,求数列{an}的前n项和Sn
(3)若对一切实数x,均有|f(x)|≤1,试证:?x∈R,f(x)=0.

查看答案和解析>>


同步练习册答案