求函数y=+的最小值. 解:因为y=+. 所以函数y是x轴上的点P(x.0)与两定点A(0.3).B(4.3)距离之和. y的最小值就是|PA|+|PB|的最小值. 由平面几何知识可知.若A关于x轴的对称点为A ′. 则|PA|+|PB|的最小值等于|A′B|. 即=4. 所以ymin=4. 查看更多

 

题目列表(包括答案和解析)

(2012•盐城一模)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD的三边AB、BC、CD由长6分米的材料弯折而成,BC边的长为2t分米(1≤t≤
3
2
);曲线AOD拟从以下两种曲线中选择一种:曲线C1是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为y=cosx-1),此时记门的最高点O到BC边的距离为h1(t);曲线C2是一段抛物线,其焦点到准线的距离为
9
8
,此时记门的最高点O到BC边的距离为h2(t).
(1)试分别求出函数h1(t)、h2(t)的表达式;
(2)要使得点O到BC边的距离最大,应选用哪一种曲线?此时,最大值是多少?

查看答案和解析>>


同步练习册答案