已知函数且在区间有最小值,无最大值,则 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
-2-x+1x≤0
f(x-1)x>0
,则下列命题中:
(1)函数f(x)在[-1,+∞)上为周期函数;
(2)函数f(x)在区间[m,m+1)(m∈N)上单调递增;
(3)函数f(x)在x=m-1(m∈N)取到最大值0,且无最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有两个实根,则a∈[
1
3
1
2
)

正确的命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

已知函数f(x)=sin(ωx+
π
3
)(ω>0)
,若f(
π
6
)=f(
π
3
)
且f(x)在区间(
π
6
π
3
)
上有最小值,无最大值,则ω的值为(  )
A、
2
3
B、
5
3
C、
14
3
D、
38
3

查看答案和解析>>

已知函数,若在区间上有最小值,无最大值,则的值为(    )

A.              B.               C.             D.

 

查看答案和解析>>

已知函数,若在区间上有最小值,无最大值,则的值为(    )

A.              B.                C.            D.

 

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案