16.直线过抛物线y2=2px的焦点F.交抛物线于A(x1,y1)B(x2,y2)两点.若的倾斜角是.则下列判断,①.②.③以AB为直径的圆必与抛物线的准线交于不同的两点.④.其中正确的判断是 . 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A、B两点,O为坐标原点,直线OA 的斜率为,直线OB的斜率为.

(1)求·的值;

(2)由A、B两点向准线做垂线,垂足分别为,求的大小.

 

查看答案和解析>>

过抛物线y2=2px(p>0)的焦点F作直线l,交抛物线于AB两点,交其准线于C点,若,则直线l的斜率为___________.

 

查看答案和解析>>

过抛物线y2=2px(p>0)的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=3p,则|AB|等于(    )

A.2p              B.4p                 C.6p                D.8p

查看答案和解析>>

(04年北京卷理)(14分)

如图,过抛物线y2=2px (p>0) 上一定点P(x0, y0) (y0>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).

(I)求该抛物线上纵坐标为的点到其焦点F的距离;

(II)当PA与PB的斜率存在且倾斜角互补时,

的值,并证明直线AB的斜率是非零常数。

 

查看答案和解析>>

过抛物线y2=2px(p>0) 的焦点F作两弦AB和CD ,其所在直线的倾斜角分别为,则|AB|与|CD|的大小关系是
[    
A. |AB|>|CD|            
B. |AB|=|CD|
C. |AB|<|CD|            
D. |AB|≠|CD|

查看答案和解析>>

 

一.选择题

BADCC  ACCCC   AD

二.填空题

13.      14. 29     15.开闭区间均可)   16.  

三、解答题

17.解:

(1)∵, ∴,

………3分

.,  ∴………6分

(2)由题知,得 ………8分

得sinB=2cosB, ………10分

………12分

18.解:

(1)得分为60分,12道题必须全做对。在其余的5道题中,有两道题答对的概率为

有一道题答对的概率为,还有两道答对的概率为………2分

所以得分为60分的概率为:P=………4分   

   (2)由可得 ………5分

,得2<x<15,则x=5或x=10,则相应得分为55分或50分……7分

得分为50分表示只做对了10道题,做错2道题,所以概率为

+

+= ………9分

得分为55分表示只做对了11道题,做错1道题,所以概率为:

P2== ………11分

则所求概率为+=。答:该考生得分的概率为 ………12分

19.证明:

(1)面A1B1C1∥面ABC,故B1C1∥BC,A1C1∥AC又BC⊥AC ,则B1C1⊥A1C1………2分

又 面AB1C⊥面ABC,则BC⊥面AB1C,则BC⊥AB1B1C1⊥AB1  又∵B1C1∩A1C1=C1

 B1C1∩AB1=B1,故B1C1为异面直线AB1与A1C1的公垂线………4分

(2)由于BC⊥面AB1C   则面VBC⊥面AB1C,过A作AH⊥B1C于H,则AH⊥面VBC

 又AB1C 为等边三角形且AC=,则AH=为A到平面VBC的距离………7分

(3)过H作HG⊥VB于G,连AG则∠AGH为二面角A-VB-C的平面角

在RtB1CB中 ………10分

又RtB1HG∽RtB1BC  则,即

故二面角A-VB-C的大小为………12分

(本题也可用建立空间直角坐标系然后用空间向量求解,评分标准参照执行)

20.解:

(1)设{an}的公差d,为{bn}的公比为q,则

………6分

(2){Cn}的前n-1项中共有{an}中的1+2+3+…(n-1)=个项………8分

且{an}的第项为………10分

故Cn是首项为,公差为2,项数为n的等差数列的前n项和,

………12分

21.解:

(1)f(x)=x2+ax+b,由 f(3)=9+3a+b=0得b=-3a-9………2分

(2)令f(x)= x2+ax-3a-9=(x-3)(x+a+3)=0得x=3或x=-a-3

当a=-6时,f(x)=≥0,则f(x)无单调递减区间………4分

当a>-6时,令f(x) =(x-3)(x+a+3)≤0,得-a-3≤x≤3,

则f(x)的单调递减区间为[-a-3,3] ………6分

当a<-6时,易得f(x)的单调递减区间为[3,-a-3]

综上所述当a=-6时, f(x)无单调递减区间;当a>-6时,f(x)的单调递减区间为[-a-3,3],

 当a<-6时, f(x)的单调递减区间为[3,-a-3] ………8分

(3)由a>0知-a-3<-3,由(2)知f(x)在[-3,3]上是减函数,又-3≤3cos≤3,-3≤3sin≤3,则要恒成立只要|f(-3)-f(3)|<72恒成立………10分

又|f(-3)-f(3)|=18|a+2|<72,得-6<a<2,又a>0,则0<a<2………12分

22.解:

(1)由题意设椭圆方程为………1分

,椭圆方程为………4分

(2)设

………7分

………9分

=

………11分

由于

因此的取值范围为………14分

 

 


同步练习册答案