18.某中学自主招生考试数学试题中共有12道选择题每道选择题都有4个选项.其中有且仅有一个是正确的.评分标准规定:“每题只选1项.答对得5分.不答或答错得0分 .某考生每道题都给出了一个答案.已确定有7道题的答案是正确的.而其余5题中.有两道题都可判断出两个选项是错误的.有一道题可以判断一个选项是错误的.还有两道题因不理解题意只能乱猜.(1)试求出该考生得60分的概率, 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

某高校在2012年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组,第二组,第三组,第四组,第五组得到的频率分布直方图如图所示,

  (1)求第三、四、五组的频率;

  (2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试。

  (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的

面试,求第四组至少有一名学生被甲考官面试的概率。

 

查看答案和解析>>

(本题满分12分)

某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.

(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?

组号

分组

频数

频率

第1组

5

0.050

第2组

0.350

第3组

30

第4组

20

0.200

第5组

10

0.100

合计

100

1.000

频率分布表

 
 

 

查看答案和解析>>

(本题满分12分)
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?

组号
分组
频数
频率
第1组

5
0.050
第2组


0.350
第3组

30

第4组

20
0.200
第5组

10
0.100
合计
100
1.000

频率分布表

 

查看答案和解析>>

(本题满分12分)
某高校在2012年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组,第二组,第三组,第四组,第五组得到的频率分布直方图如图所示,

(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试。
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的
面试,求第四组至少有一名学生被甲考官面试的概率。

查看答案和解析>>

(本题满分12分)甲、乙、丙三个同学同时报名参加某重点高校2010年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即获得自主招生入选资格.因为甲、乙、丙三人各有优势,甲、乙、丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲、乙、丙三人文化测试合格的概率分别为0.6,0.5,0.75.

(1)求甲、乙、丙三人中只有一人通过审核的概率;

(2)求甲、乙、丙三人各自获得自主招生入选资格的概率;

(3)求甲、乙、丙三人中至少有二人获得自主招生入选资格的概率。

查看答案和解析>>

 

一.选择题

BADCC  ACCCC   AD

二.填空题

13.      14. 29     15.开闭区间均可)   16.  

三、解答题

17.解:

(1)∵, ∴,

………3分

.,  ∴………6分

(2)由题知,得 ………8分

得sinB=2cosB, ………10分

………12分

18.解:

(1)得分为60分,12道题必须全做对。在其余的5道题中,有两道题答对的概率为

有一道题答对的概率为,还有两道答对的概率为………2分

所以得分为60分的概率为:P=………4分   

   (2)由可得 ………5分

,得2<x<15,则x=5或x=10,则相应得分为55分或50分……7分

得分为50分表示只做对了10道题,做错2道题,所以概率为

+

+= ………9分

得分为55分表示只做对了11道题,做错1道题,所以概率为:

P2== ………11分

则所求概率为+=。答:该考生得分的概率为 ………12分

19.证明:

(1)面A1B1C1∥面ABC,故B1C1∥BC,A1C1∥AC又BC⊥AC ,则B1C1⊥A1C1………2分

又 面AB1C⊥面ABC,则BC⊥面AB1C,则BC⊥AB1B1C1⊥AB1  又∵B1C1∩A1C1=C1

 B1C1∩AB1=B1,故B1C1为异面直线AB1与A1C1的公垂线………4分

(2)由于BC⊥面AB1C   则面VBC⊥面AB1C,过A作AH⊥B1C于H,则AH⊥面VBC

 又AB1C 为等边三角形且AC=,则AH=为A到平面VBC的距离………7分

(3)过H作HG⊥VB于G,连AG则∠AGH为二面角A-VB-C的平面角

在RtB1CB中 ………10分

又RtB1HG∽RtB1BC  则,即

故二面角A-VB-C的大小为………12分

(本题也可用建立空间直角坐标系然后用空间向量求解,评分标准参照执行)

20.解:

(1)设{an}的公差d,为{bn}的公比为q,则

………6分

(2){Cn}的前n-1项中共有{an}中的1+2+3+…(n-1)=个项………8分

且{an}的第项为………10分

故Cn是首项为,公差为2,项数为n的等差数列的前n项和,

………12分

21.解:

(1)f(x)=x2+ax+b,由 f(3)=9+3a+b=0得b=-3a-9………2分

(2)令f(x)= x2+ax-3a-9=(x-3)(x+a+3)=0得x=3或x=-a-3

当a=-6时,f(x)=≥0,则f(x)无单调递减区间………4分

当a>-6时,令f(x) =(x-3)(x+a+3)≤0,得-a-3≤x≤3,

则f(x)的单调递减区间为[-a-3,3] ………6分

当a<-6时,易得f(x)的单调递减区间为[3,-a-3]

综上所述当a=-6时, f(x)无单调递减区间;当a>-6时,f(x)的单调递减区间为[-a-3,3],

 当a<-6时, f(x)的单调递减区间为[3,-a-3] ………8分

(3)由a>0知-a-3<-3,由(2)知f(x)在[-3,3]上是减函数,又-3≤3cos≤3,-3≤3sin≤3,则要恒成立只要|f(-3)-f(3)|<72恒成立………10分

又|f(-3)-f(3)|=18|a+2|<72,得-6<a<2,又a>0,则0<a<2………12分

22.解:

(1)由题意设椭圆方程为………1分

,椭圆方程为………4分

(2)设

………7分

………9分

=

………11分

由于

因此的取值范围为………14分

 

 


同步练习册答案