题目列表(包括答案和解析)
已知、,椭圆C的方程为,、分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的与外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于A、B两点,与轴相交于点D,若
求的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点(,0),所以=,得.又因为m>1,所以,故直线的方程为
第二问中设,由,消去x,得,
则由,知<8,且有
由题意知O为的中点.由可知从而,设M是GH的中点,则M().
由题意可知,2|MO|<|GH|,得到范围
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得…………………………6分
………………………7分
、………………8分
………………………9分
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
已知曲线上动点到定点与定直线的距离之比为常数.
(1)求曲线的轨迹方程;
(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;
(3)以曲线的左顶点为圆心作圆:,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.
【解析】第一问利用(1)过点作直线的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,;,化简得
第三问点N与点M关于X轴对称,设,, 不妨设.
由于点M在椭圆C上,所以.
由已知,则
,
由于,故当时,取得最小值为.
计算得,,故,又点在圆上,代入圆的方程得到.
故圆T的方程为:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com