∴是以1为首项.2为公差的等差数列..∴ --6分 查看更多

 

题目列表(包括答案和解析)

(文)已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=ax(a>0,a≠1)的图象上,其中{an}是以1为首项,2为公差的等差数列.
(1)求数列{an}的通项公式,并证明数列{bn}是等比数列;
(2)设数列{bn}的前n项的和Sn,求
lim
n→∞
Sn
Sn+1

(3)设Qn(an,0),当a=
2
3
时,问△OPnQn的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

如果有穷数列a1,a2,…,am(m为正整数)满足条件:a1=am,a2=am-1,…,am=a1则称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{cn}中c11,c12,…,c21是以1为首项,2为公差的等差数列,则数列{cn}的所有项的和
241
241

查看答案和解析>>

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

(本题满分18分,第(1)小题4分,第2小题6分,第3小题8分)

已知点,,…,为正整数)都在函数的图像上,其中是以1为首项,2为公差的等差数列。

(1)求数列的通项公式,并证明数列是等比数列;

(2)设数列的前项的和,求

(3)设,当时,问的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由;

查看答案和解析>>

如果有穷数列a1,a2,…,am(m为正整数)满足条件:a1=am,a2=am-1,…,am=a1则称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{cn}中c11,c12,…,c21是以1为首项,2为公差的等差数列,则数列{cn}的所有项的和______.

查看答案和解析>>


同步练习册答案