题目列表(包括答案和解析)
设点是抛物线的焦点,是抛物线上的个不同的点().
(1) 当时,试写出抛物线上的三个定点、、的坐标,从而使得
;
(2)当时,若,
求证:;
(3) 当时,某同学对(2)的逆命题,即:
“若,则.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线的焦点为,设,
分别过作抛物线的准线的垂线,垂足分别为.
由抛物线定义得到
第二问设,分别过作抛物线的准线垂线,垂足分别为.
由抛物线定义得
第三问中①取时,抛物线的焦点为,
设,分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得
,
则,不妨取;;;
解:(1)抛物线的焦点为,设,
分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得
因为,所以,
故可取满足条件.
(2)设,分别过作抛物线的准线垂线,垂足分别为.
由抛物线定义得
又因为
;
所以.
(3) ①取时,抛物线的焦点为,
设,分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得
,
则,不妨取;;;,
则,
.
故,,,是一个当时,该逆命题的一个反例.(反例不唯一)
② 设,分别过作
抛物线的准线的垂线,垂足分别为,
由及抛物线的定义得
,即.
因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则
,
而,所以.
(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)
③ 补充条件1:“点的纵坐标()满足 ”,即:
“当时,若,且点的纵坐标()满足,则”.此命题为真.事实上,设,
分别过作抛物线准线的垂线,垂足分别为,由,
及抛物线的定义得,即,则
,
又由,所以,故命题为真.
补充条件2:“点与点为偶数,关于轴对称”,即:
“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。
解: (I)的定义域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是 ........4分
(II)若对任意不等式恒成立,
问题等价于, .........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,;
当b>2时,; ............8分
问题等价于 ........11分
解得b<1 或 或 即,所以实数b的取值范围是
已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
【解析】(1)离心率为得=,椭圆的短半轴为半径的圆与直线x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直线PB的方程为y=k(x-4)
已知函数,
(1)求函数的定义域;
(2)求函数在区间上的最小值;
(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由 即
第二问中,,得:
,
第三问中,由在函数的定义域上 的任意,,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由 即
(2),得:
,
(3)由在函数的定义域上 的任意,,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,
当命题p为假,命题q为真时,,
所以
乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。
(I) 求开球第4次发球时,甲、乙的比分为1比2的概率;
(II) 求开始第5次发球时,甲得分领先的概率。
【解析】本试题主要是考查了关于独立事件的概率的求解,以及分布列和期望值问题。首先要理解发球的具体情况,然后对于事件的情况分析,讨论,并结合独立事件的概率求解结论。
【点评】首先从试题的选材上来源于生活,同学们比较熟悉的背景,同时建立在该基础上求解进行分类讨论的思想的运用,以及能结合独立事件的概率公式求解分布列的问题。情景比较亲切,容易入手,但是在讨论情况的时候,容易丢情况。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com