(3)当n≥2时.an=a()n-1+b()n-2≥a+ 查看更多

 

题目列表(包括答案和解析)

设数列{an}满足an+1=
a
2
n
-nan+1
,n=1,2,3,…,当a1=2时,an=
n+1(n∈N*
n+1(n∈N*

查看答案和解析>>

(2010•柳州三模)已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).x=
t
是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记bn=2(1-
1
an
)
,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有
k
k=1
g(k)
(ak+1)(ak+1+1)
1
3
成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

已知数列an}的前n项和为sn,满足(p-1)sn=p2-an,其中p为正常数,且p≠1.
(1)求证:数列{an}为等比数列,并求出{an}的通项公式;
(2)若存在正整数M,使得当n≥M时,a1a4a7…a3n-2>a36恒成立,求出M的最小值;
(3)当p=2时,数列an,2xan+1,2yan+2成等差数列,其中x,y均为整数,求出x,y的值.

查看答案和解析>>

已知在数列{an}中,(t>0且t≠1).是函数的一个极值点.

(1)证明数列是等比数列,并求数列的通项公式;

(2)记,当t=2时,数列的前n项和为Sn,求使Sn>2012的n的最小值;

(3)当t=2时,是否存在指数函数gx),使得对于任意的正整数n成立?若存在,求出满足条件的一个gx);若不存在,请说明理由.

 

 

查看答案和解析>>

已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>


同步练习册答案