题目列表(包括答案和解析)
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,,为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
【解析】第一问利用在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
第三问,
若成等比数列,则,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
.
(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
综合①、②可得的取值范围是.
(3),
若成等比数列,则,
即.
由,可得,即,
.
又,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2, n=12时,数列中的成等比数列
已知是等差数列,其前n项和为Sn,是等比数列,且,.
(Ⅰ)求数列与的通项公式;
(Ⅱ)记,,证明().
【解析】(1)设等差数列的公差为d,等比数列的公比为q.
由,得,,.
由条件,得方程组,解得
所以,,.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:数学归纳法)
① 当n=1时,,,故等式成立.
② 假设当n=k时等式成立,即,则当n=k+1时,有:
即,因此n=k+1时等式也成立
由①和②,可知对任意,成立.
(Ⅰ)试问f(x)在[1,+∞)上能否是单调递减函数?请说明理由.
(Ⅱ)若f(x)在区间[1,+∞)上是单调递增函数,试求实数a的取值范围.
(Ⅲ)当a=1时,设数列{}的前n项和为Sn,求证:Sn-1<f(n)<Sn-1(n∈N*且n≥2).
(本小题满分14分)
现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为.
(1)试写出,并找出与()的关系式;
(2)求数列的通项公式;
(3)证明:当时, .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com