重庆市在2009年初举行了一次高中数学新课程骨干培训.共邀请了15名使用两种不同版本教材的教师.数据如下表所示:版本人教A版人教B版性别男教师女教师男教师女教师人数6342(Ⅰ).从这15名教师中随机选出2名.则2人恰好是教不同版本的男教师的概率是多少? 查看更多

 

题目列表(包括答案和解析)

(2012•自贡三模)某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如表所示
版本 人教A版 人教B版 苏教版 北师大版
人数 20 15 10 5
(I)假设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求恰好是一男一女的概率P1
(II)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北师大版的概率P2

查看答案和解析>>

(2012•自贡三模)某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 人教A版 人教B版 苏教版 北师大版
人数 20 15 10 5
(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;
(II )设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.

查看答案和解析>>

某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示:

版本

人教A版

人教B版

苏教版

北师大版

人数

20

15

10

5

(1)假设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求恰好是一男一女的概率P

(3)       从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北师大版的概率P

查看答案和解析>>

某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示

(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;

(II )设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.

 

查看答案和解析>>

某教研机构准备举行一次高中数学新课程研讨会,拟邀请50名使用不同版本的一线教师参加,使用不同版本教材的教师人数如下表所示:
版本人教A版人教B版苏教版北师大版
人数2015105
(I)从这50名教师中随机选出2名教师发言,求第一位发言的教师所使用版本是北大师大版的概率;
(II )设使用北师大版的5名教师中有3名男教师,2名女教师,若随机选出2名用北师大版的教师发言,求抽到男教师个数的分布列和期望.

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

,即时,取得最大值.

(Ⅱ)当,即时,

所以函数的单调递增区间是

17、解:(Ⅰ)从15名教师中随机选出2名共种选法,   …………………………2分

所以这2人恰好是教不同版本的男教师的概率是.  …………………5分

(Ⅱ)由题意得

; 

的分布列为

0

1

2

 

 

所以,数学期望

18、解法一:(Ⅰ)证明:连接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

所以,二面角的大小为。 ………………12分

19、(I)解:当

  ①当, 方程化为

  ②当, 方程化为1+2x = 0, 解得

  由①②得,

 (II)解:不妨设

 因为

  所以是单调递函数,    故上至多一个解,

 

20、解:(Ⅰ)由知,点的轨迹是以为焦点的双曲线右支,由,∴,故轨迹E的方程为…(3分)

(Ⅱ)当直线l的斜率存在时,设直线l方程为,与双曲线方程联立消,设

(i)∵

……………………(7分)

    假设存在实数,使得

    故得对任意的恒成立,

    ∴,解得 ∴当时,.

    当直线l的斜率不存在时,由知结论也成立,

    综上,存在,使得.

   (ii)∵,∴直线是双曲线的右准线,

    由双曲线定义得:

    方法一:∴

    ∵,∴,∴

    注意到直线的斜率不存在时,,综上,

    方法二:设直线的倾斜角为,由于直线

与双曲线右支有二个交点,∴,过

,垂足为,则

    由,得故:

21 解:(Ⅰ)

时,

,即是等比数列. ∴; 

(Ⅱ)由(Ⅰ)知,,若为等比数列,

 则有

,解得

再将代入得成立, 所以.  

(III)证明:由(Ⅱ)知,所以

,   由

所以,   

从而

.                       

 

 


同步练习册答案