两式相减得.∴. 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的通项为an=(2n-1)•2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=
(n2-2n+3)•2n+1-6
(n2-2n+3)•2n+1-6

查看答案和解析>>

数列首项,前项和满足等式(常数……)

(1)求证:为等比数列;

(2)设数列的公比为,作数列使 (……),求数列的通项公式.

(3)设,求数列的前项和.

【解析】第一问利用由

两式相减得

时,

从而  即,而

从而  故

第二问中,     又为等比数列,通项公式为

第三问中,

两边同乘以

利用错位相减法得到和。

(1)由

两式相减得

时,

从而   ………………3分

  即,而

从而  故

对任意为常数,即为等比数列………………5分

(2)    ……………………7分

为等比数列,通项公式为………………9分

(3)

两边同乘以

………………11分

两式相减得

 

查看答案和解析>>

【解析】本小题考查直线方程的求法。画草图,由对称性可猜想

事实上,由截距式可得直线,直线,两式相减得,显然直线AB与CP的交点F满足此方程,又原点O也满足此方程,故为所求的直线OF的方程。

答案

查看答案和解析>>

⊙O1和⊙O2的极坐标方程分别为

⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;

⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.

【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用

(1)中,借助于公式,将极坐标方程化为普通方程即可。

(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。

解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(I),由.所以

为⊙O1的直角坐标方程.

同理为⊙O2的直角坐标方程.

(II)解法一:由解得

即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.

解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x

 

查看答案和解析>>

已知数列{an}的通项为an=(2n-1)•2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=   

查看答案和解析>>


同步练习册答案