题目列表(包括答案和解析)
(本小题满分14分)
已知函数 (>0)的图象在点处的切线方程为.
(Ⅰ)用表示;
(Ⅱ)若在上恒成立,求的取值范围;
(Ⅲ)证明:1+++…+>+.
(本小题满分14分)
已知函数,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)讨论的单调性;
(Ⅱ)设a=3,求在区间{1,}上值域。期中e=2.71828…是自然对数的底数。
(本小题满分14分)已知函数=+有如下性质:如果常数>0,那么该
函数在0,上是减函数,在,+∞上是增函数.
(1)如果函数=+(>0)的值域为6,+∞,求的值;
(2)研究函数=+(常数>0)在定义域内的单调性,并说明理由;
(3)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=+(是正整数)在区间[,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分14分) 对函数Φ(x),定义fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n为常数)为Φ(x)的第k阶阶梯函数,m叫做阶宽,n叫做阶高,已知阶宽为2,阶高为3.
(1)当Φ(x)=2x时 ①求f0(x)和fk(x)的解析式; ②求证:Φ(x)的各阶阶梯函数图象的最高点共线;
(2)若Φ(x)=x2,则是否存在正整数k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,请说明理由.
(本小题满分14分)
已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,
f(x)<0. (1)求f(1)的值; (2)判断f(x)的单调性
(3)若f(3)=-1,解不等式f(|x|)<-2.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com