题目列表(包括答案和解析)
(本小题满分12分) 已知函数在上是增函数,在上为减函数.
(Ⅰ)求的表达式;
(Ⅱ)若当时,不等式恒成立,求实数的值;
(Ⅲ)是否存在实数使得关于的方程在区间[0,2]上恰好有两个相异的实根,若存在,求实数的取值范围.
(本小题满分12分) 已知两点和分别在直线和上运动,且,动点满足: (为坐标原点),点的轨迹记为曲线. (Ⅰ)求曲线的方程,并讨论曲线的类型; (Ⅱ)过点作直线与曲线交于不同的两点、,若对于任意,都有为锐角,求直线的斜率的取值范围.
(本小题满分12分)已知函数(1)若函数存在单调递减区间,求的取值范围;(2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围;
19.((本小题满分12分)
已知动点P与双曲线的两个焦点F1、F2的距离之和为定值2a(a>),且cos∠F1PF2的最小值为.
(1)求动点P的轨迹方程;
(2)若已知D(0,3),M、N在动点P的轨迹上,且=λ,求实数λ的取值范围.
( 本小题满分12分)
已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线、的斜率之和为定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com