汽车在行驶中.由于惯性作用.刹车后.还要向前滑行一段距离才能停住.我们称这段距离为“刹车距离 .刹车距离是分析事故的一个重要因素.在一个限速40千米/小时以内的弯道上.甲.乙两车相向而行.发现情况不对后同时刹车.但还是相碰了.事后现场测得甲车的刹车距离为12米.乙车的刹车距离超过10米.但小于12米.查有关资料知.甲车的刹车距离为的关系为=0.1x+0.01x2,乙车的刹车距离S的关系如图所示.请你就两车的速度方面分析是谁的责任. 查看更多

 

题目列表(包括答案和解析)

精英家教网汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40km/h乙内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了,事后现场测量甲车的刹车距离为12m,乙车的刹车距离超过10m,但小于20m,查有关资料知,甲种车的刹车距离S(m)与车速x(km/h)之间有下列关系,S=0.1x+0.01x2,乙种车的刹车距离S(m)与车速x(km/h)的关系如下图表示,请你就两车的速度方面分析相碰的原因.

查看答案和解析>>

(2007•东城区二模)阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得
x-3>0
x+1<0
 ①或 
x-3<0
x+1>0
 ②
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时) 30 50 70
刹车距离S(米) 6 15 28
问该车是否超速行驶?

查看答案和解析>>

精英家教网汽车在行驶中,由于惯性作用,刹车后,还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.在一个限速40/小时以内的弯道上,甲、乙两车相向而行,发现情况不对后同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12乙车的刹车距离超过10但小于12.查有关资料知,甲车的刹车距离y(米)与车速x(千米/小时)的关系为y=0.1x+0.01x2与车速x千米/小时)的关系如图所示.请你就两车的速度方面分析这起事故是谁的责任.

查看答案和解析>>

汽车在行驶中,由于惯性的作用,刹车后要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40千米的公路上,有两辆汽车相向而行,发现情况不对时刹车,但还是相碰了,事发后现场测得A车的刹车距离是14米,B车的刹车距离是11米,又知道A,B两种车型的刹车距离s(米)与车速x(千米/时)之间分别有如下的关系:sA=0.3x+2,sB=0.24x+1,问这次事故应负主要责任的是谁?

查看答案和解析>>



汽车在行驶中,由于惯性作用,刹车后,还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.在一个限速千米/小时以内的弯道上,甲、乙两车相向而行,发现情况不对后同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为米,乙车的刹车距离超过米,但小于米.查有关资料知,甲车的刹车距离(米)与车速(千米/小时)的关系为;乙车的刹车距离(米)与车速(千米/小时)的关系如右图所示.请你就两车的速度方面分析这起事故是谁的责任.

查看答案和解析>>

1.C   2.B   3.C   4.C   5.A  6.D  7.C   8.B  9.B  10.B

11.3    12. 360°-36°?n       13.3.98cm     14.210cm,    15. 5   16.y= 2x+2

17.∵(x+5)(x+7)=(x2+12x+35+1-1)=(x+6)2-1<(x+6)2

∴(x+5)(x+7)< (x+6)2

18.(1)图略                                        ……………………    3分

(2)12个单位                                        ………………   6分

19.解:连接DE,BF.

∵四边形ABCD是矩形,

∴AB∥CD.   ∠ODF=∠OBE                    …………   1分

∵EF垂直平分BD,

∴OD=OB

∴ΔDOF≌ΔBOE(ASA)                            ………    2分

∴DF=BE

∴四边形BFDE是平行四边形。

∵EF垂直平分BD,

FD=FB(线段的垂直平分线上的点到线段两端点的距离相等)

∴平行四边形BFDE是菱形               ………    4分

∴DF=BF=DE=EB,OE=OF.

在RtΔDOF中,DF=+=250

∴S菱形DEBF=BD?EF=DF?BC

Х400х300=250?BC

∴BC=240                           …………   5分

在RtΔBCF中 FC===70

∴CD=DF+FC=250+70=320

∴S梯形ABCD=CD?BC=320×240=76800m2      ……………………..    6分

答略                      ……………     7分

20.解:将圆柱有相对的A.B垂直切开,并将半圆柱侧面展开成一个矩形, ………   2分

如图所示,作BO⊥AO于O,则AO,BO分别平行于矩形的两边,作A点关于D点的对称点Aㄆ,连AㄆB,则ΔA`

BO为直角三角形,且BO==12,A`O=(15-3)+4=16, …………    4分

有勾股定理得    

A`B2=A´O2+BO2=162+122=400,

∴A´B=20                                  ………………  7分

故蜘蛛沿B外_壁C内_壁A路线爬行最近,

且它至少要走20cm                            ………    8分

 

21.因为0.1x+0.01x2,而12,所以0.1x+0.01x2=12,………………   2分

解之,得 舍去,故<40,

所以甲车未超速行驶。 ………………………………………………     4分

=kx,把(60,15)代入,得 15=60k。解得,k=

=x.          ………………………………………………  6分

由题意知 10<x<12解之得:40<x<48.

所以乙车超速行驶。………………………………………………      8分

22.(1)∵a2=b2+c2-2bccosA=25+49-2?5?7?cos60º= 39

  ∴a=                                      ……………   2分

∵b2=a2+c2-2accosB. 

∴cosB==

∠B≈36º                                         ……………   3分

∴∠C=180º-60º-36º=84º                         ……………    4分

(2).由余弦定理得  72=82+92-2×8×9cosA

得 cosA=

∴∠A≈48º                                               ………… 6分

再得  82=92+72-2×9×7cosB

得 cosB=

∠B≈58º                                      ………………              7分

∴∠C=180º-∠A-∠B=74º                              ………           8分

23.(1).连接BE,可得ΔABE∽ΔADB.               ………………               2分

∴ AB2=AD?AE                               ………………                4分

(2).成立                                     ………………                5分

连接EB,可证ΔAEB∽ΔABD,                     ………………              7分

∴仍可得AB2=AD?AE                               ……………            8分

24.(1)y=60-(x-100)0.02x   (0<x<550)              ………………         4分

(2)根据题意可列方程为:6000=[60-(x-100)0.02]x-40x

整理可得:x2-3100x+300000=0            ……………….         6分

       (x-500)(x-600)=0                              …………   8分

      x1=500     x2=600(舍去)                      ………………      9分    

销售商订购500个时,该厂可获利润6000元。                ……….  10分   

25.(1)S梯形OPFE=(OP+EF)?OE=(25+27)

设运动时间为t秒时,梯形OPFE的面积为y

则y=(28-3t+28-t)t=-2t2+28t=-2(t-7)2+98.         ………………  3分

所以当t=7秒时,梯形OPFE的面积最大,最大面积为98;    ……………… 4分

(2)当S梯形OPFE=SΔAPF时,

-2t2+28t=,解得t1=8,t2=0(舍去)。                       ……………  7分

当t=8秒时,FP=8                                  ………………   8分

(3) 由,                        ………………    10分

且∠OAB=∠OAB,                                     ………   11分

可证得ΔAF1P1∽ΔAF2P2                                            ……  12分

 


同步练习册答案