(3)如图③.当时.仿照(1)中的方法和过程求, 查看更多

 

题目列表(包括答案和解析)

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连接OC,OA,OB,∴OC⊥AB,OA=OB,∴∠AOC=
1
2
AOB
,AB=2BC.
在Rt△AOC中,∵∠AOC=
1
2
360°
3
=60°
,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴S△OAB=
1
2
•r•2rtan60°=r2tan60°
,∴S正三角形=3S△OAB=3r2•tan60°.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=
 

(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=
 

精英家教网

查看答案和解析>>

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.
精英家教网
(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=
1
2
∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC=
1
2
360°
3
=60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=
1
2
•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4S△OAB=
 

(3)如图3,当n=5时,仿照(1)中的方法和过程求S正五边形
(4)如图4,根据以上探索过程,请直接写出S正n边形=
 

查看答案和解析>>

(2007•临汾)阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.

(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4S△OAB=______;
(3)如图3,当n=5时,仿照(1)中的方法和过程求S正五边形
(4)如图4,根据以上探索过程,请直接写出S正n边形=______.

查看答案和解析>>

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.

(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4S△OAB=______;
(3)如图3,当n=5时,仿照(1)中的方法和过程求S正五边形
(4)如图4,根据以上探索过程,请直接写出S正n边形=______.

查看答案和解析>>

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.

(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=数学公式∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC=数学公式数学公式=60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=数学公式•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4S△OAB=;
(3)如图3,当n=5时,仿照(1)中的方法和过程求S正五边形
(4)如图4,根据以上探索过程,请直接写出S正n边形=.

查看答案和解析>>

一、选择题

1. C   2. A   3.B   4.C   5.B  6.C   7.D   8.D   9.C   10.B

二、填空题

11.      12.    13.30º   14. 0.18;

15. -7   16. (1);   (2)50。

三、解答题

17.

            


18

 

19.解:(1),同理

(2)若平分,四边形是菱形.

证明:     四边形是平行四边形,

平行四边形为菱形

 

20.解:(1)(每图2分)………………………………………………………………4分

(2)0.12,36°;10,90°;(每空0.5分)…………………………………………………6分

(3)当旋钮开到36°附近时最省气,当旋钮开到90°时最省时.最省时和最省气不可能同时做到.………………………………………………………………………………………8分

说明:第(3)问只要表达意思明确即可,方式和文字不一定如此表达.


注:最省气的旋钮位置在36°附近,接近0°~90°的黄金分割点0.382(=0.4).

21.

22.解:(2).???????????????????????????????????????????????????????????????????????????????????????????? 2分

(3)如图③,当时,设于点,连结

,????????????????????????????? 3分

,???????????????????????????? 4分

,???????????????????????????? 5分

.?????????????????????????????????? 6分

(4).????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.证明:(1),

        (2分)

             (3分)

(2)连结(1分)     (4分)

               

                (5分)

                (6分)

             (7分)

               (8分)

 

24.解:(1)依题可得BP=t,CQ=2t,PC=t-2.                 ……………1分

  ∵EC∥AB,∴△PCE∽△PAB,

 ∴EC=.                                             ……………3分

 QE=QC-EC=2t-.                  ……………4分

 作PF⊥,垂足为F. 则PF=PB?sin60°=t               ……………5分

 ∴S=QE?PF=??t=(t2-2t+4)(t>2).  ……6分

(2)此时,C为PB中点,则t-2=2,∴=4.                    ……………8分

 ∴QE==6(厘米).         ……………10分

25.(1)∵点A的坐标为(0,16),且AB∥x轴

∴B点纵坐标为16,且B点在抛物线

∴点B的坐标为(10,16)...............................1分

又∵点D、C在抛物线上,且CD∥x轴

∴D、C两点关于y轴对称

∴DN=CN=5...............................2分

∴D点的坐标为(-5,4)...............................3分

(2)设E点的坐标为(a,16),则直线OE的解析式为:..........................4分

∴F点的坐标为()..............................5分

由AE=a,DF=,得

..............................7分

解得a=5..............................8分

(3)连结PH,PM,PK

∵⊙P是△AND的内切圆,H,M,K为切点

∴PH⊥AD  PM⊥DN  PK⊥AN..............................9分

在Rt△AND中,由DN=5,AN=12,得AD=13

设⊙P的半径为r,则 

所以 r=2.............................11分

在正方形PMNK中,PM=MN=2

在Rt△PMF中,tan∠PFM=.............................12分

 


同步练习册答案