10.在区间 范围内.函数 与函数 的图像交点的个数为 A.1 B.2 C.3 D.4 查看更多

 

题目列表(包括答案和解析)

若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

【解析】第一问中,利用定义,判定由题意得,由,所以

第二问中, 由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点,从而得到t的范围。

解(I)由题意得,由,所以     (6分)

(II)由题意得方程有两实根

所以关于m的方程有两实根,

即函数与函数的图像在上有两个不同交点。

 

查看答案和解析>>

已知函数.

(1)当时,求在闭区间上的最大值与最小值;

(2)若线段与导函数的图像只有一个交点,且交点在线段的内部,试求的取值范围.

 

 

查看答案和解析>>

已知函数图像上一点处的切线方程为(1)求的值;(2)若方程在区间内有两个不等实根,求的取值范围;(3)令如果的图像与轴交于两点,的中点为,求证:

查看答案和解析>>

已知函数图像上一点处的切线方程为(1)求的值;(2)若方程在区间内有两个不等实根,求的取值范围;(3)令如果的图像与轴交于两点,的中点为,求证:

查看答案和解析>>

已知函数f(x)=2lnx-x2(x>0)。
(1)求函数f(x)的单调区间与最值;
(2)若方程2xlnx+mx-x3=0在区间[,e]内有两个不相等的实根,求实数m的取值范围;(其中e为自然对数的底数)
(3)如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g′(px1+qx2)<0(其中,g′(x)是g(x)的导函数,正常数p,q满足p+q=1,q>p)

查看答案和解析>>


同步练习册答案