已知函数.若时.恒有, 试求实数的取值范围. §9 简单的有理函数与无理函数 复习目标: 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)试求的值域;

(2)设,若对,恒 成立,试求实数的取值范围

【解析】第一问利用

第二问中若,则,即当时,,又由(Ⅰ)知

若对,恒有成立,即转化得到。

解:(1)函数可化为,  ……5分

 (2) 若,则,即当时,,又由(Ⅰ)知.        …………8分

若对,恒有成立,即

,即的取值范围是

 

查看答案和解析>>

已知函数f(x)=lg(x+
ax+1
-1)
,其中a是大于零的常数.
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)的最小值;
(3)若?x∈[0,+∞)恒有f(x)>0,试确定实数a的取值范围.

查看答案和解析>>

已知函数f(x)=ax2+ax-4(a∈R).
(1)若函数f(x)恰有一个零点,求a的值;
(2)若对任意a∈[1,2],f(x)≤0恒成立,求x的取值范围;
(3)设函数g(x)=(a+1)x2+2ax+2a-5,是否存在实数a,使得当x∈(-2,-1)时,函数g(x)的图象始终在f(x)图象的上方,若存在,试求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)定理:函数g(x)=ax+
b
x
(a、b是正常数)在区间(0,
b
a
)
上为减函数,在区间(
b
a
,+∞)
上为增函数.参考该定理,解决下面问题:是否存在实数m同时满足以下两个条件:①不等式f(x)-
m
2
>0
恒成立;②方程f(x)-m=0有解.若存在,试求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=
x2+ax+b
x
(x≠0)
是奇函数,且满足f(1)=f(4)
(Ⅰ)求实数a、b的值; 
(Ⅱ)试证明函数f(x)在区间(0,2]单调递减,在区间(2,+∞)单调递增;
(Ⅲ)是否存在实数k同时满足以下两个条件:
①不等式f(x)+
k
2
>0
对x∈(0,+∞)恒成立;
②方程f(x)=k在x∈[-6,-1]上有解.若存在,试求出实数k的取值范围,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案