向心加速度:(1)方向:总是指向圆心.时刻发生变化大小:a=v2/r= 2r=2r=2r.(3)物理意义:只描述线速度方向改变的快慢.(4)注意:a与r是成正比还是成反比?若 相同.a与r成正比,若v相同.a与r成反比,若是r相同.a与 2成正比.与v2成反比. 查看更多

 

题目列表(包括答案和解析)

关于曲线运动中,下列说法正确的是:
    A.加速度方向一定不变
    B.加速度方向和速度方向始终保持垂直
    C.加速度方向跟所受的合外力方向始终一致
    D.加速度方向总是指向圆形轨迹的圆心

查看答案和解析>>

理论研究指出,简谐振动的振动位移X与时间t的关系图象(x-t)可以是一条余弦曲线,其函数表达式为:x=Acosωt,其中A是振幅,ω=2π/T.对于周期性变化的电压和电流的图象也可以是一条余弦曲线,其函数表达式类似.下图中从阴极K发射的电子经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有记录纸的圆筒.整个装置放在真空内,电子发射的初速度不计(见图).若在两金属板上交变电压以U2=1000cos2πt(V)的规律变化,并使圆筒绕中心轴按图示方向以n=2转/s匀速转动,电子质量为9.1×10-31kg,电子电量为1.6×10-19c求:
(1)电子加速后的入射速度?
(2)在纸筒上的落点对入射方向的总偏距?
(3)确定电子在记录纸上的轨迹形状并画出1s内所记录到的图形.
精英家教网

查看答案和解析>>

理论研究指出,简谐振动的振动位移X与时间t的关系图象(x-t)可以是一条余弦曲线,其函数表达式为:x=Acosωt,其中A是振幅,ω=2π/T.对于周期性变化的电压和电流的图象也可以是一条余弦曲线,其函数表达式类似.下图中从阴极K发射的电子经电势差U=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有记录纸的圆筒.整个装置放在真空内,电子发射的初速度不计(见图).若在两金属板上交变电压以U2=1000cos2πt(V)的规律变化,并使圆筒绕中心轴按图示方向以n=2转/s匀速转动,电子质量为9.1×10-31kg,电子电量为1.6×10-19c求:
(1)电子加速后的入射速度?
(2)在纸筒上的落点对入射方向的总偏距?
(3)确定电子在记录纸上的轨迹形状并画出1s内所记录到的图形.

查看答案和解析>>

(2005?闵行区二模)理论研究指出,简谐振动的振动位移X与时间t的关系图象(x-t)可以是一条余弦曲线,其函数表达式为:x=Acosωt,其中A是振幅,ω=2π/T.对于周期性变化的电压和电流的图象也可以是一条余弦曲线,其函数表达式类似.下图中从阴极K发射的电子经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10cm、间距d=4cm的平行金属板A、B之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有记录纸的圆筒.整个装置放在真空内,电子发射的初速度不计(见图).若在两金属板上交变电压以U2=1000cos2πt(V)的规律变化,并使圆筒绕中心轴按图示方向以n=2转/s匀速转动,电子质量为9.1×10-31kg,电子电量为1.6×10-19c求:
(1)电子加速后的入射速度?
(2)在纸筒上的落点对入射方向的总偏距?
(3)确定电子在记录纸上的轨迹形状并画出1s内所记录到的图形.

查看答案和解析>>

近期《科学》中文版的文章介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统.飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等.如图所示为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mP、mQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道做圆周运动,运动过程中Q距地面高为h.设缆索总保持指向地心,P的速度为vP.已知地球半径为R,地面的重力加速度为g.

(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外.设缆索中无电流,问:缆索P、Q哪端电势高;它们之间的电势差为多少.此问中可认为缆索各处的速度均近似等于vP,求P、Q两端的电势差;

(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大.

查看答案和解析>>


同步练习册答案