(2)如果记该考生答完4道题后所答对的题数为.求的分布列.数学期望与方差. 查看更多

 

题目列表(包括答案和解析)

2008年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是
(1)若该考生至少正确做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率;
(2)如果记该考生答完4道题后所答对的题数为ξ,求ξ的分布列、数学期望与方差。

查看答案和解析>>

 

2008年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确出是相互独立的,并且每一道题被该考生正确做出的概率都是

(1)若该考生至少正确做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率;

(2)如果记该考生答完4道题后所答对的题数为,求的分布列、数学期望与方差。

 

 

 

 

 

查看答案和解析>>

(2011•洛阳一模)某班级举行一次知识竞赛,活动分为初赛和决赛,现将初赛成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分组(分数段) 频数(人数) 频率
(60,70)
8
8
0.16
(70,80) 22
0.44
0.44
(80,90) 14 0.28
(90,100)
6
6
0.12
0.12
合计 50
1
1
(1)填充频率分布表中的空格(直接写出对应空格序号的答案,不必写过程);
(2)决赛规则如下:参加决赛的同学依次回答主持人的4道题,答对2道就终止答题,并获得一等奖;如果前三道题都答错,就不再回答第四题.某同学甲现已进入决赛(初赛80分以上,不含80分),每题答对的概率P的值恰好等于频率分布表中80分以上的频率值.
①求该同学答完3道题而获得一等奖的概率;
②记该同学决赛中答题的个数为ξ,求ξ的分布列.

查看答案和解析>>

某班级举行一次知识竞赛,活动分为初赛和决赛,现将初赛成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分组(分数段) 频数(人数) 频率
(60,70) ______ 0.16
(70,80) 22 ______
(80,90) 14 0.28
(90,100) ______ ______
合计 50 ______
(1)填充频率分布表中的空格(直接写出对应空格序号的答案,不必写过程);
(2)决赛规则如下:参加决赛的同学依次回答主持人的4道题,答对2道就终止答题,并获得一等奖;如果前三道题都答错,就不再回答第四题.某同学甲现已进入决赛(初赛80分以上,不含80分),每题答对的概率P的值恰好等于频率分布表中80分以上的频率值.
①求该同学答完3道题而获得一等奖的概率;
②记该同学决赛中答题的个数为ξ,求ξ的分布列.

查看答案和解析>>

某班级举行一次知识竞赛,活动分为初赛和决赛,现将初赛成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分组(分数段)频数(人数)频率
(60,70)______0.16
(70,80)22______
(80,90)140.28
(90,100)____________
合计50______
(1)填充频率分布表中的空格(直接写出对应空格序号的答案,不必写过程);
(2)决赛规则如下:参加决赛的同学依次回答主持人的4道题,答对2道就终止答题,并获得一等奖;如果前三道题都答错,就不再回答第四题.某同学甲现已进入决赛(初赛80分以上,不含80分),每题答对的概率P的值恰好等于频率分布表中80分以上的频率值.
①求该同学答完3道题而获得一等奖的概率;
②记该同学决赛中答题的个数为ξ,求ξ的分布列.

查看答案和解析>>

 

一、选择题(共60分)

1―6DDBBAC  7―12DABCAC

二、填空题:(本大题共5小题,每小题5分,共20分)

13.3

14.

15.

16.240

三、解答题:本大题有6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)记“这名考生通过书面测试”为事件A,则这名考生至少正确做出3道题,即正确做出3道题或4道题,

       故   4分

   (2)由题意得的所有可能取值分别是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列为:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面体ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如图,连B1C,则

       易证

       中点,

      

          8分

       取CD中点M,连BM, 则平面CC1D1D,

       作于N,连NB,由三垂线定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       则二面角B―DE―C的大小为    12分

       解法二:(1)以D为坐标原点,射线DA为轴,建立如图所示坐标为

       依题设

      

      

       又

       平面BDE    6分

       8分

       由(1)知平面BDE的一个法向量为

       取DC中点M,则

      

      

       等于二面角B―DE―C的平面角    10分

          12分

20.解:(1)由已知得   2分

       由

      

       递减

       在区间[-1,1]上的最大值为   4分

       又

      

       由题意得

       故为所求         6分

   (2)解:

      

           8分

       二次函数的判别式为:

      

       令

       令    10分

      

       为单调递增,极值点个数为0    11分

       当=0有两个不相等的实数根,根据极值点的定义,可知函数有两个极值点    12分

21.解:(1)设

       化简得    3分

   (2)将    4分

       法一:两点不可能关于轴对称,

       的斜率必存在

       设直线DE的方程为

       由   5分

           6分

          7分

       且

          8分

       将代化入简得

          9分

       将

       过定点(-1,-2)    10分

       将

       过定点(1,2)即为A点,舍去     11分

           12分

       法二:设    (5分)

       则   6分

       同理

       由已知得   7分

       设直线DE的方程为

       得   9分

          10分

       即直线DE过定点(-1,-2)    12分

22.解:(1)由    2分

       于是

       即    3分

       有   5分

          6分

   (2)由(1)得    7分

       而

      

               

           10分

       当

       于是

       故命题得证     12分


同步练习册答案