已知三次函数 查看更多

 

题目列表(包括答案和解析)

19、已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.

查看答案和解析>>

已知三次函数f(x)=
1
3
x3+
b
2
x2+x
在R上有极值,则实数b的范围为
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

查看答案和解析>>

(2012•惠州模拟)已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围;
(3)对?x∈[-1,1],都有|f′(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式.

查看答案和解析>>

(2012•宣城模拟)已知三次函数f(x)=ax3+bx2+cx+d(a≠0)为R上奇函数,且在x=
3
3
处取得极值-
2
3
9
.记函数图象为曲线C.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)设曲线C与其在点P1(1,f(1))处的切线交于另一点P2(x2,f(x2)),线段P1P2与曲线C所围成封闭图形的面积记为S1,求S1的值;
(Ⅲ) 在(Ⅱ)的条件下,设曲线C与其在点P2处的切线交于另一点P3(x3,f(x3)),线段P2P3与曲线C所围成封闭图形的面积记为S2,…,按此方法依次做下去,即设曲线C与其在点Pn(xn,f(xn))处的切线交于另一点Pn+1(xn+1,f(xn+1)),线段PnPn+1与曲线C所围成封闭图形的面积记为Sn,试求Sn关于n的表达式.

查看答案和解析>>

已知三次函数f(x)=
1
3
ax3+
1
2
bx2+cx
(a,b,c∈R,a≠0)的导数为f′(x)满足条件:
(i)当x∈R时,f′(x-4)=f′(2-x),且f′(x)≥x;
(ii)当x∈(O,2)时,f′(x)≤(
x+1
2
)2

(iii)f′(x)在R上的最小值为0.数列{an}是正项数列,{an}的前n项的和是Sn,且满足Sn=f′(an).
(1)求f′(x)的解析式;
(2)求证:数列{an}是等差数列;
(3)求证:
C
0
n
a1
+
C
1
n
a2
+
C
2
n
a3
+…+
C
n
n
an+1
2n-1
a1+an+1
a1an+1

查看答案和解析>>

 

一、选择题(共60分)

1―6DDBBAC  7―12DABCAC

二、填空题:(本大题共5小题,每小题5分,共20分)

13.3

14.

15.

16.240

三、解答题:本大题有6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)记“这名考生通过书面测试”为事件A,则这名考生至少正确做出3道题,即正确做出3道题或4道题,

       故   4分

   (2)由题意得的所有可能取值分别是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列为:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面体ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如图,连B1C,则

       易证

       中点,

      

          8分

       取CD中点M,连BM, 则平面CC1D1D,

       作于N,连NB,由三垂线定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       则二面角B―DE―C的大小为    12分

       解法二:(1)以D为坐标原点,射线DA为轴,建立如图所示坐标为

       依题设

      

      

       又

       平面BDE    6分

       8分

       由(1)知平面BDE的一个法向量为

       取DC中点M,则

      

      

       等于二面角B―DE―C的平面角    10分

          12分

20.解:(1)由已知得   2分

       由

      

       递减

       在区间[-1,1]上的最大值为   4分

       又

      

       由题意得

       故为所求         6分

   (2)解:

      

           8分

       二次函数的判别式为:

      

       令

       令    10分

      

       为单调递增,极值点个数为0    11分

       当=0有两个不相等的实数根,根据极值点的定义,可知函数有两个极值点    12分

21.解:(1)设

       化简得    3分

   (2)将    4分

       法一:两点不可能关于轴对称,

       的斜率必存在

       设直线DE的方程为

       由   5分

           6分

          7分

       且

          8分

       将代化入简得

          9分

       将

       过定点(-1,-2)    10分

       将

       过定点(1,2)即为A点,舍去     11分

           12分

       法二:设    (5分)

       则   6分

       同理

       由已知得   7分

       设直线DE的方程为

       得   9分

          10分

       即直线DE过定点(-1,-2)    12分

22.解:(1)由    2分

       于是

       即    3分

       有   5分

          6分

   (2)由(1)得    7分

       而

      

               

           10分

       当

       于是

       故命题得证     12分


同步练习册答案