在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵
属于特征值-1的一个特征向量为
,求矩阵A的逆矩阵.
C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ
2cos
2θ+3ρ
2sin
2θ=3,直线l的参数方程为
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x
2)(1+x
3)≥8x
3;
(2)若x∈R,不等式(1+x)(1+x
2)(1+x
3)≥8x
3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.