3.在平面直角坐标系中.抛物线x2=-3y经过伸缩变换 后得到的曲线是( ) A.y′2=-4x′ B.x′2=-4y′ C. y′2=-x′ D.x′2=-y′ 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,已知点P(1,-1),过点P作抛物线T0:y=x2的切线,其切点分别为M(x1,y1)、N(x2,y2)(其中x1<x2).

(1)求x1与x2的值;

(2)若以点P为圆心的圆E与直线MN相切,求圆E的面积;

(3)过原点O(0,0)作圆E的两条互相垂直的弦AC,BD,求四边形ABCD面积的最大值.

查看答案和解析>>

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,F是抛物线Cx2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过MFO三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程.
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,F是抛物线Cx22py(p0)的焦点,M是抛物线C上位于第一象限内的任意一点,过MFO三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.

(1)求抛物线C的方程.

(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

 

查看答案和解析>>

在平面直角坐标系xOy中,过定点C(p,0)作直线与抛物线y2=2px(p>0)相交于A,B两点,如图,设动点A(x1,y1)、B(x2,y2).

(1)求证:y1y2为定值;

(2)若点D是点C关于坐标原点O的对称点,求△ADB面积的最小值;

(3)是否存在平行于y轴的定直线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案