题目列表(包括答案和解析)
(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分.
已知两点、,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足.
(1) 求动点所在曲线的轨迹方程;
(2)(理科)过点作斜率为的直线交曲线于两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
(文科)过点作斜率为的直线交曲线于两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.
(本小题满分16分)
已知数列是各项均为正数的等差数列.
(1)若,且,,成等比数列,求数列的通项公式;
(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求实数的最小值;
(3)若数列中有两项可以表示为某个整数的不同次幂,求证:数列 中存在无穷多项构成等比数列.
(本题满分16分)已知向量,=(1,2).
(1)若,求tan的值; (2)若,,求的值.
(本题满分16分)
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0.
(1)求a,b的值; (2)求函数的极大值与极小值的差.
(本题16分,第(1)小题3分;第(2)小题5分;第(3)小题8分)
已知数列和的通项分别为,(),集合,[来源:Zxxk.Com]
,设. 将集合中元素从小到大依次排列,构成数列.
(1)写出;
(2)求数列的前项的和;
(3)是否存在这样的无穷等差数列:使得()?若存在,请写出一个这样的
数列,并加以证明;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com