19. 已知点.点在轴上.点在轴的正半轴上.点在直线上 .且满足.. (Ⅰ)当点在轴上移动时.求点的轨迹的方程, (Ⅱ)设为轨迹上两点.且..求实数.使.且. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点

(I)求椭圆的方程;

(II)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

 

查看答案和解析>>

(本小题满分12分)

已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.

(1)求双曲线C的方程;

(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线轴上的截距b的取值范围.

 

查看答案和解析>>

(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。

  (Ⅰ)求椭圆E的标准方程;

 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

 

查看答案和解析>>

.(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.

(1)求椭圆的方程;

(2)是否存在斜率为 ,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

 (本小题满分12分) 已知椭圆C的对称中心为原点O,焦点在轴上,离心率为,且过点

(1)求椭圆C的方程;

(2) 过椭圆C的左焦点的直线与椭圆C相交于两点,若的面积为,求圆心在原点O且与直线相切的圆的方程.

 

查看答案和解析>>


同步练习册答案