20. 解:(1)过点F作.交于点. 为的中点 为的中点..················· 2分 由.得. ··········································· 4分 ·········································································· 6分 (2) 又 .············································································ 9分 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)已知:如图,⊙轴交于C、D两点,圆心的坐标

为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)

 

 

 

 

 

 

 

 

 


1.(1)求切线BC的解析式;

2.(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G

且∠CGP=120°,求点的坐标;

3.(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于EF,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分10分)
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:

第一步:对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)
请解答以下问题:
【小题1】(1)如图2,若延长MNBCP,△BMP是什么三角形?请证明你的结论.
【小题2】(2)在图2中,若AB=aBC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP

查看答案和解析>>

(本小题满分10分)
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:

第一步:对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)
请解答以下问题:
【小题1】(1)如图2,若延长MNBCP,△BMP是什么三角形?请证明你的结论.
【小题2】(2)在图2中,若AB=aBC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP

查看答案和解析>>

(本小题满分10分)已知:如图,⊙轴交于C、D两点,圆心的坐标

为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)

 

 

 

 

 

 

 

 

 


1.(1)求切线BC的解析式;

2.(2)若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G

且∠CGP=120°,求点的坐标;

3.(3)向左移动⊙(圆心始终保持在轴上),与直线BC交于EF,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)
如图,已知抛物线yax2bxcx轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3)。设抛物线的顶点为D,求解下列问题:

小题1:(1)求抛物线的解析式和D点的坐标;
小题2:(2)过点D作DF∥轴,交直线BC于点F,求线段DF的长,并求△BCD的面积;
小题3:(3)能否在抛物线上找到一点Q,使△BDQ为直角三角形?若能找到,试写出Q点的坐标;若不能,请说明理由。

查看答案和解析>>


同步练习册答案