题目列表(包括答案和解析)
(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分)
已知函数f(x)=x3-ax2,其中a为实常数.
(1)设当x∈(0,1)时,函数y = f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围
(2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.
(本小题满分12分)
已知函数f(x)=x3-ax2,其中a为实常数.
(1)设当x∈(0,1)时,函数y = f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围
(2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.
(本小题满分12分) 已知函数f (x) = ax2 + 2ln(1-x),其中a∈R.
(1)是否存在实数a,使得f (x)在x =处取极值?若存在,求出a的值,若不存在,说明理由;
(2)若f (x)在[-1,]上是减函数,求实数a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com