18.已知函数.构造函数F(x).定义如下:当 时. ( ) A.有最大值3.最小值-1 B.有最大值3.无最小值 C.有最大值.无最小值 D.无最大值.也无最小值 查看更多

 

题目列表(包括答案和解析)

已知函数.构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么y=F(x)

[  ]
A.

有最大值3最小值-1

B.

有最大值3,无最小值

C.

有最大值,无最小值

D.

有最大值,最小值

查看答案和解析>>

已知函数,g(x)=3-x,构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),则F(x)的最大值为________.

查看答案和解析>>

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

已知函数y=f(x)满足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均为常数)
(1)求函数y=f(x)的解析式;
(2)利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,构造数列的过程继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个常数列{xn},求a的取值范围;
②如果取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求a实数的值.

查看答案和解析>>

已知函数f(x)=
x+1-a
a-x
(a∈R)

(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈[-2,-
3
2
]

(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.

查看答案和解析>>


同步练习册答案