解: (1)易知 在 时取得极值. 由 得 由题意得: . 故 . 经检验 时满足题意. 因 . ∴ . 情形一:当 ,即 时,此时不满足条件. 情形二:当 ,即 时, 要使 在 上恒成立, 而 要最大,只能是 的较大根,则 . ∴ (ii) ∴当 时, . 查看更多

 

题目列表(包括答案和解析)

已知曲线的参数方程是是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线:的极坐标方程是=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).

(Ⅰ)求点A,B,C,D的直角坐标;

 (Ⅱ)设P为上任意一点,求的取值范围.

【命题意图】本题考查了参数方程与极坐标,是容易题型.

【解析】(Ⅰ)由已知可得

即A(1,),B(-,1),C(―1,―),D(,-1),

(Ⅱ)设,令=

==

,∴的取值范围是[32,52]

 

查看答案和解析>>

已知函数,其中.

  (1)若处取得极值,求曲线在点处的切线方程;

  (2)讨论函数的单调性;

  (3)若函数上的最小值为2,求的取值范围.

【解析】第一问,处取得极值

所以,,解得,此时,可得求曲线在点

处的切线方程为:

第二问中,易得的分母大于零,

①当时, ,函数上单调递增;

②当时,由可得,由解得

第三问,当时由(2)可知,上处取得最小值

时由(2)可知处取得最小值,不符合题意.

综上,函数上的最小值为2时,求的取值范围是

 

查看答案和解析>>


同步练习册答案