线段垂直平分线的性质和判定 查看更多

 

题目列表(包括答案和解析)

22、我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立,若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>

我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>

如图,抛物线经过三点.

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上存在一点,使的值最小,求点的坐标以

的最小值;

(3)在轴上取一点,连接.现有一动点以每秒个单位长度的速度从点出发,沿线段向点运动,运动时间为秒,另有一动点以某一速度同时从点出发,沿线段向点运动,当点、点两点中有一点到达终点时,另一点则停止运动(如右图所示).在运动的过程中是否存在一个值,使线段恰好被垂直平分.如果存在,请求出的值和点的速度,如果不存在,请说明理由.

【解析】此题主要考查了用待定系数法求二次函数解析式,以及利用函数图象和图象上点的性质判断符合某一条件的点是否存在,是一道开放性题目,有利于培养同学们的发散思维能力

 

查看答案和解析>>

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到______的距离相等;到一个角的两边距离相等的点,在______上.
(2)线段是轴对称图形,线段的______是它的一条对称轴.线段的______上的点到这条线段两个端点的距离相等.______的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到______的距离相等;到一个角的两边距离相等的点,在______上.
(2)线段是轴对称图形,线段的______是它的一条对称轴.线段的______上的点到这条线段两个端点的距离相等.______的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>


同步练习册答案