题目列表(包括答案和解析)
已知函数;
(1)若函数在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1),
因为在其定义域内的单调递增函数,
所以 内满足
恒成立,即
恒成立,
亦即,
即可 又
当且仅当,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使成立,等价于不等式
在[1,e]上有解,设
上的增函数,
依题意需
实数k的取值范围是
已知函数f(x)=,
为常数。
(I)当=1时,求f(x)的单调区间;
(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。
【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是
然后求导,
,得到由
,得0<x<1;由
,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则
或
在区间[1,2]上恒成立,即即
,或
在区间[1,2]上恒成立,解得a的范围。
(1)当a=1时,f(x)=,则f(x)的定义域是
。
由,得0<x<1;由
,得x>1;
∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分
(2)。若函数f(x)在区间[1,2]上为单调函数,
则或
在区间[1,2]上恒成立。∴
,或
在区间[1,2]上恒成立。即
,或
在区间[1,2]上恒成立。
又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=
,h(x)min=h(1)=3
即,或
。 ∴
,或
。
已知曲线和
相交于点A,
(1)求A点坐标;
(2)分别求它们在A点处的切线方程(写成直线的一般式方程);
(3)求由曲线在A点处的切线及
以及
轴所围成的图形面积。(画出草图)
【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。
已知曲线和
相交于点A,
(1)求A点坐标;
(2)分别求它们在A点处的切线方程(写成直线的一般式方程);
(3)求由曲线在A点处的切线及
以及
轴所围成的图形面积。(画出草图)
【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。
设点为平面直角坐标系
中的一个动点(其中O为坐标原点),点P到定点
的距离比点P到
轴的距离大
。
(1)求点P的轨迹方程。
(2)若直线与点P的轨迹相交于A、B两点,且
,求
的值。
(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。
【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com