题目列表(包括答案和解析)
(福建卷理)(本小题满分13分)
已知A,B 分别为曲线C: +=1(y0,a>0)与x轴
的左、右两个交点,直线过点B,且与轴垂直,S为上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。
(2009福建卷理)(本小题满分13分)
已知A,B 分别为曲线C: +=1(y0,a>0)与x轴
的左、右两个交点,直线过点B,且与轴垂直,S为上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。
(2009福建卷理)(本小题满分13分)
已知A,B 分别为曲线C: +=1(y0,a>0)与x轴
的左、右两个交点,直线过点B,且与轴垂直,S为上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。
(本小题满分13分)
如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,
∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P。
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F。若△OEF的面积不小于2,求直线l斜率的取值范围。
(本小题满分13分)
如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,
∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P。
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F。若△OEF的面积不小于2,求直线l斜率的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com