17.解:(Ⅰ)=·= =.则的最小正周期为.-----6分 (Ⅱ)由·<-1.得. 又.则.即. 故的取值范围是().-----12分 已知向量 (Ⅰ)当时.求函数的值域. (Ⅱ)若的值. (Ⅰ)由----4分 ∵ ∴的值域为[-1.2]--------7分 (Ⅱ)∵ ∴ ∴------10分 ∴------13分 是平面上的两个向量.且互为垂直. (1)求的值, (2)若的值. .解:(1)由题设.得 = ----2分 的值为2. ----6分 (2) ----8分 ----10分 ----12分 在中.... (1)求的值, (2)求的值. 解:(1)在中.由.得. 又由正弦定理 得:. (2)由余弦定理:得:. 即.解得或.所以. 所以. . 即. 已知向量.函数 (Ⅰ)求函数f(x)的最小正周期, (Ⅱ)当时.求f(x)的单调减区间. 查看更多

 

题目列表(包括答案和解析)

求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.

【解析】利用圆心和半径表示圆的方程,首先

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)  

∴r=,

故所求圆的方程为:=2

解:法一:

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圆的方程为:=2                   ………………………12分

法二:由条件设所求圆的方程为: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圆的方程为:=2             ………………………12分

其它方法相应给分

 

查看答案和解析>>

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

已知sina=,aÎ(,p),cosb=-,b是第三象限的角.

⑴ 求cos(a-b)的值;

⑵ 求sin(a+b)的值;

⑶ 求tan2a的值.

【解析】第一问中∵ aÎ(,p),∴ cosa=-=-,  ∵ b是第三象限的角,

∴ sinb=-=-,     

cos(a-b)=cosa·cosb+sina·sinb =(-)×(-)+×(-)=- 

⑵ 中sin(a+b)=sina·cosb+cosa·sinb       =×(-)+(-)×(-)= ⑶ 利用二倍角的正切公式得到。∵tana==- ∴tan2a= ==- 

解∵ aÎ(,p),∴ cosa=-=-,         …………1分

∵ b是第三象限的角,∴ sinb=-=-,        ………2分

⑴ cos(a-b)=cosa·cosb+sina·sinb          …………3分

=(-)×(-)+×(-)=-          ………………5分

⑵ sin(a+b)=sina·cosb+cosa·sinb          ……………………6分

×(-)+(-)×(-)=           …………………8分

⑶ ∵tana==-             …………………9分

∴tan2a=             ………………10分

=-

 

查看答案和解析>>

设集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p,q,x∈R.当A∩B={}时,求p的值和A∪B.

查看答案和解析>>


同步练习册答案